

Outline

- Storm Tide "101"
- Some historical perspectives
- Key aspects of storm tide hazard methodologies
- Challenge your risk perception
- Climate change aspects
- Conclusions

What Affects Ocean Water Levels?

- Very Long Period Geologic (100s to 10,000s years)
- Anthropogenic climate change (decades++)
- Long Period Ocean/Atmosphere Interactions (few years to decades)
- Annually (every year; seasonal)
- Daily (tides, winds)
- Intermittent extreme sea level events
 - Monsoon surges (northern Australia)
 - Non-tropical storm events (East Coast Lows etc)
 - Remote and/or close approach Tropical Cyclones

Components of a Storm Tide

Components of a Storm Tide

Temporal Context

What Influences the Severity of Storm Tide Hazard?

- The storm climatology:
 - Intense low pressure / high wind speeds
 - Large size
 - Fast moving
 - Frequency of occurrence
- The environment:
 - Relatively wide and shallow continental shelf
 - Absence of large-scale reefs
 - Shallow water embayments providing coastal trapping
 - Track, angle of attack
- The exposure:
 - Low lying land
 - Low tidal range

Historical Storm Tide Events

Major Qld Storm Tide Events over the Past 100 Years

			Reference Central	Storm Surge	Inundation Above
Date	Place	Event	Pressure		HAT
			hPa	m	m
21-Jan-1918	Mackay		933	3.8	2
10-Mar-1918	Mission Beach		926	>7?	3.5?
04-Feb-1920	Cairns		988	>1.5	0.7?
30-Mar-1923	Albert R Heads	Douglas Mawson	974	>3	2.3?
11-Mar-1934	Cape Tribulation		968	>9?	>6?
23-Feb-1948	Bentinck Is		996	>3.7	3.2?
02-Mar-1949	Gladstone		988	>1.2	0.2
03-Feb-1964	Edward River	Dora	974	5?	?
29-Jan-1967	Moreton Bay	Dinah	945	2?	1.5?
19-Feb-1971	Inkerman Station	Fiona	960	>4?	?
24-Dec-1971	Townsville	Althea	952	2.9	0.4
19-Dec-1976	Albert River	Ted	950	4.6?	3.6?
04-Apr-1989	Molongle Creek	Aivu	935 ?	3.2?	1.7?
06-Jan-1996	Gilbert River	Barry	950	4.5?	3.4?
10/03/2005	Night Island	Ingrid	960	1.15	1.19
20-Mar-2006	Clump Point	Larry	960	2.3	0.7
13/01/2009	Townsville	Ex Charlotte	987	0.7	0.4
3/02/2011	Cardwell	Yasi	929	5.3	2.2
28/01/2013	Brisbane	Ex Oswald	995	0.9	0.2
28/03/2017	Laguna Quays	Debbie	950	2.7	1.0

After Harper (1999)

Mackay Jan 1918 – 30 killed

Image courtesy Bureau of Meteorology (J. Callaghan)

Cairns - 1920

Image courtesy Bureau of Meteorology (J. Callaghan)

Ada - Jan 1970 – Whitsunday Islands

Bureau of Meteorology Image

Althea - Dec 1971 - Townsville

Bureau of Meteorology Image

[2.5m AHD Clump Point]

Larry - Mar 2006 - Innisfail

Willis Re - Systems Engineering Australia Images

A very weak, remote ex-TC but with a large-scale wind field.

A persistent low-level surge coincided with a period of "King Tides".

Ex-TC Charlotte - Jan 2009 - Townsville

Ex-TC Charlotte - Jan 2009 - Townsville

Ex-TC
Charlotte
peak storm
tide levels
were +0.04m
higher than
TC Althea in
1971 but wind
and wave
impacts were
much lower.

Yasi - Feb 2011 - Kurrimine to Tully Heads

[4m AHD at Tully Heads; 5?m inland]

Yasi - Feb 2011 – Kurrimine to Tully Heads

JCU Cyclone Testing Station and GHD Pty Ltd Images

The "not so long ago" ...

Ita – 11 Apr 2014 – Cape Flattery to Cooktown

US NRL, DSITI images

The "just recently" 03/27/17 1800Z 13P DEBBIE 03/27/17 2013Z F-17 91H HAT = 6.3 metres above LAT Naval Research Lab www.nrlmry.navy.mil/sat_products.html <-- 91H Brightness Temp (Kelvin) --> 200

Debbie – 28 Mar 2017 – Whitsundays

US NRL, DSITI, JCU Cyclone Testing Station images

Tropical Cyclone Climatology

La Nińa

El Nińo

Coastal Hazard Methodologies

- Quite specialised expertise is required
- Requires a <u>statistical</u> approach:
 - TC climatology analyses
 - Development of coastal hydrodynamic models for tide, storm surge and waves
 - Application of stochastic simulation methods
- Requires calibration and validation
 - Knowledge is continuously advancing
 - More and better data is being collated
- Valuable references:
 - "Queensland Climate Change Study 2001-2004"
 - Various investigation reviews are available

Queensland Climate Change and Community Vulnerability to Tropical Cyclones

STAGE 1:

Technical blueprint Climatology Greenhouse Effects Modelling Approaches

- Wind
- Surge
- Waves

Calibration and Verification Statistical methodologies Information needs

Recommendations

STAGE 2: Tide + Surge + Wave Setup (selected)
STAGE 3: Tide + Surge (East Coast of Qld)
STAGE 4: Housing Vulnerability to Wind
SYNTHESIS REPORT RECOMMENDATIONS

Queensland Climate Change and Community Vulnerability to Tropical Cyclones OCEAN HAZARDS ASSESSMENT - Stage 1 Report March 2001 **Review of Technical Requirements**

Harper (2001)

https://www.longpaddock.qld.gov.au/about/publications/vulnerabilitytocyclones/index.html

The Need for a Comprehensive Methodology

State-wide Storm Tide Hazard

Storm Tide Hazard Estimation

Rare Events = Not enough TC data for robust statistical analysis

Numerical simulation approaches are required

Storm Tide Hazard Estimation

There are two elements to this problem ...

PROBABILISTIC

QCoast2100 Knowledge and Information Sharing Forum 09-Nov-2017 happen? ...

Probabilistic Decision Making

Encounter Probability

Exposure Time Considered (yr) QCoast2100 Knowledge and Information Sharing Forum 09-Nov-2017

Probabilistic Decision Making

Encounter Probability

Exposure Time Considered (yr) QCoast2100 Knowledge and Information Sharing Forum 09-Nov-2017

Storm Tide Hazard Estimation

100 yr Return Period : More benign than you might think?

Note: The minimum prescribed building risk for wind loads is a 500 yr ARI event

Best Practice Lessons from The Netherlands

Chosen Hazard Criteria

Potential Fatalities

The Return Period of the Hazard is chosen depending on the potential for Loss of Life

(after Jonkman et al. 2010)

Climate Change – Sea Level Rise

- Global sea levels are impacted by, in order of decreasing contribution:
 - An accelerating thermal expansion throughout the 21st century
 - The melting of glaciers
 - Retreat of the Greenland ice shelf
 - Antarctic ice losses

Climate Change – Sea Level Rise

- Global sea levels measured by satellite altimetry 1993 to 2012 was 3.2 ± 0.4 mm p.a.
- Versus estimated total of 2.8 ± 0.7 mm p.a.
- AR5 projections of global average sea level rise by 2100 are in the range 0.28 to 0.98 m (relative to the average sea level in 1995 and representing nominally 5% to 95% confidence levels).

Climate Change – Sea Level Rise

Climate Change – Tropical Cyclones

- Potentially up to 10% <u>increase</u> in peak intensity (winds) by 2100
- Potentially <u>reduction</u> in frequency of occurrence (> 30%)
- Minor changes in track expected
- Minor changes in size/speed
- Increased rainfall rates
- Waves, currents, storm surge hazards likewise

Climate Change – Guidance

- Latest science summary of relevance to coastal and ocean engineering across Australia
- Framework for investigation and modelling
- Encounter probability

Summary and Conclusions

- Queensland has a history of significant threats from tropical cyclone storm tide impacts
- Storm tide hazard estimation requires specialised expertise
 - Require adherence to established guidelines
 - "High (spatial) resolution" does not guarantee "high accuracy"
 - Seek evidence of deterministic and <u>probabilistic</u> skill (e.g. winds)
 - Specify sensitivity analysis of assumptions
 - Seek independent peer review of outcomes
- Investigate the full range of hazard magnitudes
 - Don't blindly prescribe a specific (nominal) risk level (e.g. 100 y ARI etc)
 - Must allow the hazard risk profile to influence the adaptation options and decisions

Summary and Conclusions

- Decision Making
 - Consider the impacts from the full range of hazards
 - Include encounter probability thinking
- Accuracy vs Precision
 - LiDaR (stated) precision does not dictate accuracy of hazards
 - Look beyond "bathtub" mapping statistical surfaces are not flat
- Climate change is another sensitivity analysis
 - Consider the uncertainty in the IPCC predictions
 - Seek methodologies that can realistically include these effects
- Study scope and budget
 - Develop realistic time and cost expectations
 - Aim for a comprehensive scope
 - Remember that you get what you pay for ...

